

The Third Paradigm in High-Purity Sealing: A Technical and Strategic Evaluation of Translucent Peroxide-Cured Encapsulated Systems

1. Executive Introduction: Divergence in Sealing Philosophies

In the rigorous architecture of modern industrial processing—encompassing pharmaceutical manufacturing, semiconductor fabrication, and bioprocess engineering—the selection of elastomeric sealing components is rarely a trivial decision. It is a strategic calculation of risk, weighing the probabilities of catastrophic containment failure against the exigencies of operational cost and maintenance accessibility. For decades, this calculus has been dominated by a binary paradigm. Engineers and procurement officers have historically navigated a dichotomy between two entrenched material philosophies: the high-purity, optically clear, but process-sensitive Platinum-Cured Silicone, and the mechanically robust, thermally stable, but visually opaque Peroxide-Cured Silicone.

This binary choice has forced a compromise. To achieve the visual clarity required for contamination inspection and the purity profiles demanded by regulatory bodies like the FDA and USP, operators have been compelled to specify Platinum-Cured systems. While chemically superior in terms of extractables, these systems introduce significant manufacturing complexities—specifically regarding pot-life constraints and mixing instability—that can manifest as supply chain vulnerabilities or cost premiums. Conversely, the more rugged and process-friendly Peroxide-Cured systems have traditionally relied on iron oxide heat stabilizers, rendering them opaque "black boxes" (or more accurately, red boxes) that obscure internal defects and preclude visual quality assurance.

The subject of this comprehensive analysis is a material innovation that effectively disrupts this established dichotomy: the **Translucent Peroxide-Cured Encapsulated O-Ring**, specifically the formulation developed by M-Cor.¹ This product category represents a "Third Paradigm" in sealing technology. By engineering a peroxide-cured core that eliminates the need for iron oxide pigmentation—thereby achieving the optical translucency traditionally reserved for platinum systems—and encapsulating this core within a chemically inert fluoropolymer (FEP or PFA) jacket, M-Cor has synthesized a hybrid solution. This report validates the technical and strategic viability of this material as a "secondary choice" that may, in specific operational contexts, outperform the "primary" platinum option.

We will rigorously examine the user's core thesis: that the operational volatility of traditional two-part mixing systems (Part A/Part B) and the associated short pot-life issues in long-run extrusions constitute a critical failure mode that this translucent peroxide technology mitigates.³ Through a deep-dive analysis of polymer rheology, crosslinking thermodynamics, optical physics, and failure mode effects analysis (FMEA), this report will demonstrate how the Translucent Peroxide system offers the processing stability of high-consistency rubber (HCR) while delivering the "glass cockpit" inspectability essential for high-reliability environments.

2. The Chemistry of Crosslinking: Theoretical Foundations

To fully appreciate the strategic divergence between "Standard Peroxide," "Platinum," and M-Cor's "Translucent Peroxide," one must first deconstruct the molecular mechanisms that govern their formation. The performance of an elastomer—its memory, thermal resistance, and purity—is inextricably linked to the specific chemical pathway used to forge its polymer chains into a three-dimensional network.

2.1 The Free Radical Mechanism: Peroxide Curing

The peroxide cure system, often described as the "workhorse" of the silicone industry, relies on a mechanism of free radical polymerization. Unlike addition cure systems, which require a specific stoichiometry of functional groups, peroxide curing is a chaotic but robust process driven by thermal decomposition.

The process begins with an organic peroxide, such as dicumyl peroxide or 2,5-dimethyl-2,5-di(t-butylperoxy)hexane.⁶ These compounds are selected for their high activation energy; they remain inert at room temperature, which is the foundational chemical reason for the superior shelf stability of uncured peroxide compounds. Upon exposure to elevated temperatures (typically between 110°C and 175°C depending on the specific peroxide half-life), the peroxide bond undergoes homolytic cleavage. This energetic event splits the molecule into two highly reactive free radicals.⁷

These radicals are indiscriminate scavengers. They attack the polydimethylsiloxane (PDMS) polymer backbone, specifically targeting the methyl (-CH₃) groups. By abstracting a hydrogen atom, the radical transforms the methyl group into a methylene radical (-CH₂•). When two such methylene radicals on adjacent polymer chains come into proximity, they combine to form a direct Carbon-Carbon (C-C) bond. This "crosslink" bridges the chains, transforming the viscous gum into an elastic rubber.

The robustness of this Carbon-Carbon bond is significant. It is short, non-polar, and high-energy, contributing to the exceptional compression set resistance often observed in

peroxide-cured materials.⁸ However, the process is not without its chemical detritus. The "scavenged" hydrogen atoms and the remnants of the peroxide initiator form byproducts—typically volatile organic acids or alcohols (e.g., benzoic acid). In a non-encapsulated seal, these byproducts can bloom to the surface, creating a whitish residue and potentially contaminating sensitive process fluids.⁷ This has historically been the "Achilles' heel" of peroxide systems in pharma applications. M-Cor's solution utilizes the encapsulation jacket as a barrier to mitigate this risk, a mechanism we will explore in depth in later sections.

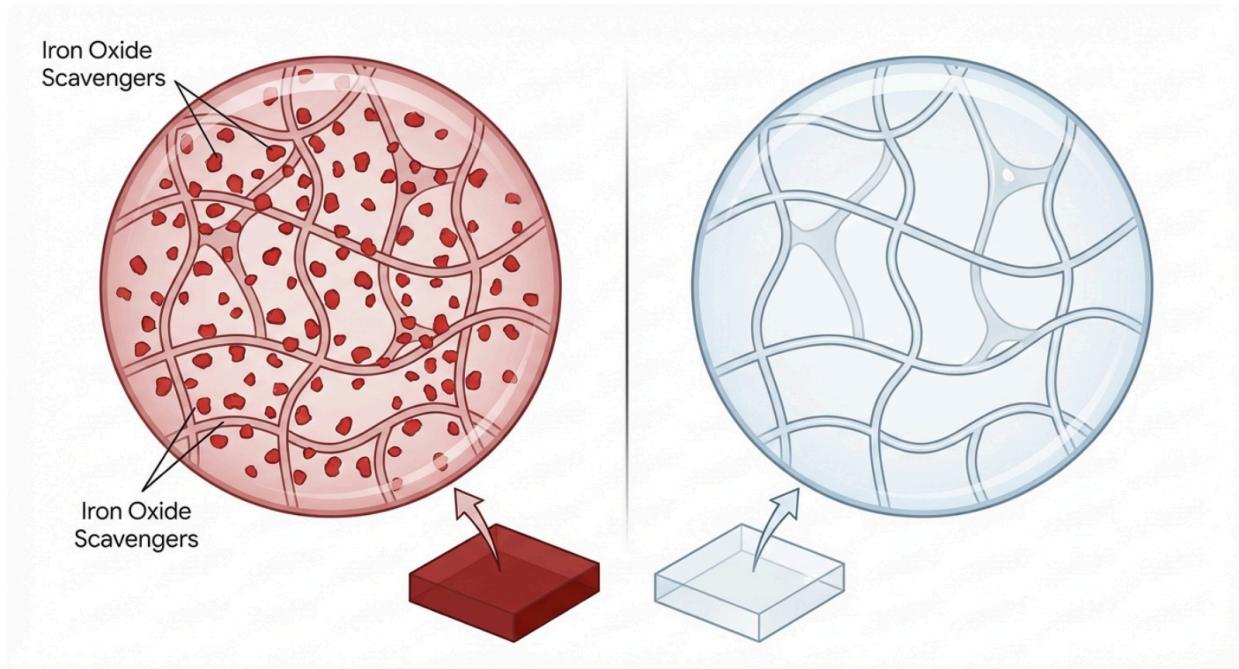
2.2 The Hydrosilylation Mechanism: Platinum Curing

In contrast, Platinum Curing (Addition Cure) is a lesson in elegant precision. It utilizes a noble metal catalyst (a platinum complex, often Karstedt's catalyst) to facilitate a reaction between a silicon hydride (Si-H) group on a crosslinker molecule and a vinyl (Si-CH=CH₂) group on the base polymer.¹⁰

This reaction is an "addition" mechanism: the double bond of the vinyl group opens, and the silicon hydride adds across it. Crucially, there are no leaving groups, no byproducts, and no volatile residues.³ The result is a strictly "clean" network with high optical clarity and purity, which explains its dominance in medical and food-contact applications.

However, this chemical elegance comes with a significant operational cost: catalytic sensitivity. The platinum catalyst is so efficient that it will catalyze the reaction even at ambient temperatures unless inhibited. Furthermore, the catalyst is susceptible to "poisoning." Trace amounts of sulfur, amines, tin, or even certain paper products can irreversibly bind to the platinum active sites, halting the cure entirely.¹¹ This fragility creates the operational constraints—specifically regarding mixing and pot life—that the user has correctly identified as a pain point.

2.3 The "Third Option": Translucent Peroxide Chemistry


The M-Cor Translucent Peroxide system represents a sophisticated hybridization of these attributes. Chemically, it retains the Free Radical mechanism of the peroxide cure. This means it inherits the robust, poison-resistant nature of the radical reaction. It does not require the pristine, contaminant-free environment demanded by platinum catalysts.

The innovation lies not in the crosslinking itself, but in the **stabilization package**. Standard peroxide silicones rely on ferric oxide (Fe₂O₃) to scavenge oxidative free radicals that would otherwise degrade the polymer backbone at high temperatures (oxidative cleavage). This iron oxide is what imparts the characteristic red/orange color.¹²

M-Cor's formulation utilizes advanced, non-pigmented thermal stabilizers. While proprietary, these typically involve rare earth oxides (like cerium) or vinyl-specific chemistries that provide oxidative stability comparable to iron oxide without interacting with visible light.¹⁴ This allows the material to withstand the -60°C to +200°C temperature range¹⁵ while maintaining the

optical transmission of a platinum-cured material.

Molecular Architecture: The Source of Translucency

Micro-structural comparison. Left: Standard Peroxide matrix saturated with Iron Oxide particles (Red) for heat stability, blocking light transmission. Right: M-Cor Translucent Peroxide matrix using advanced non-pigmented stabilizers, allowing full optical clarity for inspection.

3. Manufacturing Dynamics: Addressing the "Pot Life" Thesis

The user's query contains a specific and highly technical observation: "*traditional peroxide cured needs to be mixed on site part a and part b as once mixed it has a very short pot life... leading to problems with long run extrusions.*"

This statement touches on the critical discipline of **Rheology** and **Manufacturing Logistics**. To fully validate the user's reasoning, we must dissect the operational realities of "mixing on site" and contrast the pot-life behaviors of Platinum vs. Peroxide systems in extrusion environments.

3.1 The Logistics of Mixing: "Part A & Part B"

In the manufacturing of high-performance silicone extrusions (which form the core of the encapsulated O-ring), the raw material supply chain dictates the processing risk.

The Platinum Operational Risk:

Platinum systems, particularly Liquid Silicone Rubber (LSR), are almost exclusively supplied as two components (Part A and Part B). Part A contains the platinum catalyst; Part B contains the crosslinker and inhibitors.¹⁶

- **The Mixing Event:** These components must be pumped into a static mixer immediately before the extruder.
- **The "Tick-Tock" of Pot Life:** Once mixed, the chemical clock starts ticking. Even with inhibitors, the viscosity of the mix begins to rise (a phenomenon known as "creeping viscosity").
- **The Extrusion Consequence:** In a "long run extrusion" (e.g., running thousands of feet of cord for O-ring cores), this viscosity shift is disastrous. As the material thickens in the feed, the extruder pressure rises, the die swell changes, and the dimensional tolerance of the profile drifts. If the line must be stopped for maintenance, the material inside the mixer and screw can cure (gel), requiring a complete, expensive tear-down.⁵ This validates the user's concern about "short pot life" causing manufacturing headaches.

The Peroxide Operational Reality:

Traditionally, Peroxide High Consistency Rubber (HCR) is supplied as a "Base Gum" and a separate "Catalyst Paste."

- **The Historical "On-Site" Burden:** In older or smaller operations, operators would indeed have to mill the catalyst paste into the gum on a two-roll mill ("mixed on site"). This is labor-intensive and introduces variability—if the operator mills it too long or too hot, the friction heat can trigger the peroxide, causing "scorch" (premature lumps of cured rubber).¹⁸
- **The "Long Life" Advantage:** However, the user's concern about peroxide having a short pot life after mixing is chemically unfounded *relative to platinum*. Once a peroxide gum is mixed (compounded), it has an **exceptionally long pot life** at room temperature. A compounded peroxide log can sit for weeks or months without curing because the activation energy threshold (approx 115°C+) is simply not met at ambient conditions.⁴

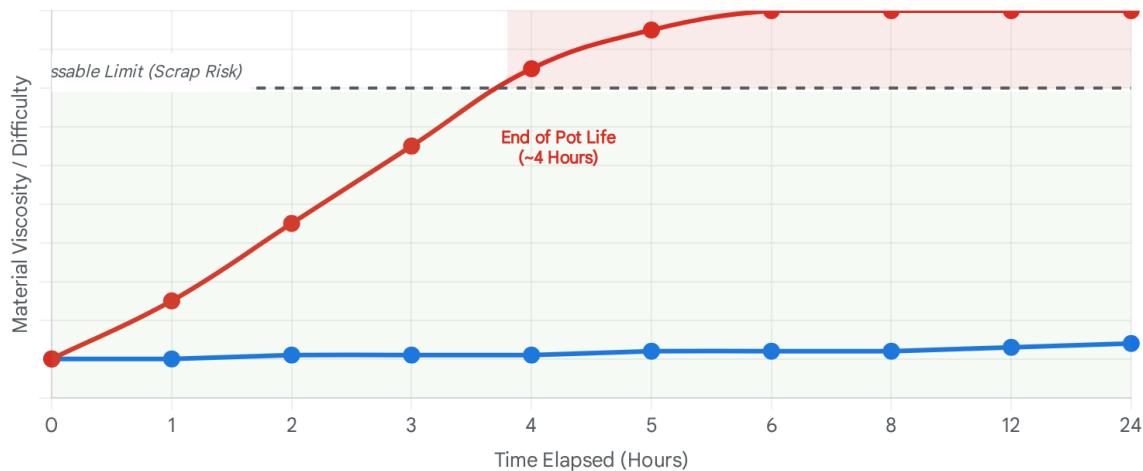
Synthesis of the User's Insight:

The user is likely conflating the labor of mixing peroxide (the "part a and part b" milling step) with the instability (short pot life) of platinum. Or, they are referring to specific liquid peroxide systems which are rare.

However, the strategic conclusion remains valid: Multi-component mixing on the production floor is a liability.

3.2 The M-Cor Solution: Pre-Compounded Stability

M-Cor's Translucent Peroxide product resolves these manufacturing liabilities through the


logistics of Pre-Form Compounding.

By utilizing a High Consistency Rubber (HCR) peroxide system, M-Cor (or its raw material supplier) can perform the compounding under strictly controlled cleanroom conditions *offline*. Because the peroxide system is shelf-stable at room temperature, the "Part A / Part B" race against time is eliminated.

- **Extrusion Consistency:** The extruder is fed with a single-component, pre-compounded log. The rheology (flow characteristic) of the material is constant from the first hour of the run to the last. There is no chemical reaction occurring in the barrel, only physical flow.
- **Long-Run Viability:** This stability allows for extremely long, uninterrupted extrusion runs with tight dimensional control. This is crucial for encapsulated O-rings, where the silicone core must fit perfectly inside the non-stretchable FEP/PFA jacket. If the core diameter varies due to "pot life" viscosity changes, the finished O-ring will have gaps or wrinkles in the jacket.

Operational Window: Curing System Stability Analysis

● Platinum System (Rapid Cure / High Risk) ● Peroxide System (M-Cor) (Shelf Stable)

Comparison of effective processing windows. Platinum systems (top) exhibit rapid viscosity build-up after mixing, necessitating immediate use. M-Cor Peroxide systems (bottom) remain stable at ambient temperatures, enabling consistent long-run extrusion without degradation.

Data sources: [TBL Plastics](#), [Viking Extrusions](#), [Silex](#)

3.3 Thermodynamics of Cure: The Scorch Safety Margin

The concept of "Scorch Safety" further illuminates why the peroxide system is the robust "secondary choice" the user seeks. In rubber processing, "scorch" is the premature onset of curing during processing (e.g., inside the extruder screw).

- **Platinum Sensitivity:** Platinum cure is exothermic and autocatalytic. Once it starts, it accelerates. If an extruder runs too fast, shear heat can trigger the platinum catalyst inside the barrel. The window between "flowing" and "cured" is narrow.
- **Peroxide Latency:** Peroxide systems exhibit a "step-function" cure profile. They do practically nothing until they hit a specific "kick-off" temperature (e.g., 115°C for 2,4-dichlorobenzoyl peroxide, or 160°C for vinyl-specific peroxides). This provides a massive **thermal safety margin**. The extruder can generate significant shear heat without risking the material curing in the screw. This robustness makes the manufacturing process "fail-safe," ensuring that the final product—the O-ring core—is free of the gel particles and inconsistencies that plague sensitive platinum runs.⁷

4. The Physics of Translucency: Removing the Iron Curtain

The user's query highlights "translucent clear silicone" as a defining feature. To understand the magnitude of this innovation in a peroxide system, we must explore the optical physics of elastomers and the historical role of iron oxide.

4.1 The "Black Box" Problem of Iron Oxide

For the past 50 years, "Industrial Grade" silicone has been synonymous with "Red Silicone." This redness is not cosmetic; it is functional. Silicone rubber (PDMS) is inherently susceptible to oxidative degradation at temperatures above 180°C. Oxygen attacks the methyl groups, leading to chain scission (softening) or cross-linking (hardening/embrittlement).

To combat this, ferric oxide (Fe₂O₃) is added as a heat stabilizer. It acts as a redox sink, neutralizing the free radicals generated by thermal oxidation.¹² While effective, iron oxide is a pigment. It absorbs and scatters light across the visible spectrum, rendering the material opaque.

- **The Inspection Blind Spot:** In an encapsulated O-ring, an opaque core is a liability. If the core suffers from **Compression Set Fracture** (internal cracking due to over-squeezing) or **Explosive Decompression** (gas blisters inside the rubber), these defects are invisible from the outside. The O-ring looks perfect until it fails. This is the "Black Box" risk.

4.2 The Science of Clear Stabilization

M-Cor's Translucent Peroxide system achieves clarity by replacing the iron oxide with

non-pigmented stabilizers. These are often based on:

1. **Cerium Oxides/Hydrates:** Rare earth compounds that provide excellent heat stability (up to 250°C) but, when used in specific nano-particle grades or formulations, have a refractive index closely matched to the silicone polymer or are used in such low concentrations that they do not block light.¹⁴
2. **Vinyl-Rich Crosslinking:** Optimizing the polymer architecture to create a tighter network that is inherently more resistant to thermal unzipping, reducing the need for heavy metal scavengers.

The result is a material with a **Translucency** (light transmission) that rivals platinum-cured systems.

- **Implication for the User:** This allows the user to specify a peroxide system (with its cost and processing benefits) without inheriting the "Black Box" risk. It enables the "**Glass Cockpit**" inspection capability—where an operator can look *through* the FEP jacket and see the core integrity—while avoiding the platinum price premium.

5. The Science of Encapsulation: The Fluoropolymer Shield

The "commonality" noted by the user—that "both products are encapsulated in an FEP or PFA jacket"—is the technological keystone of this entire product category. The encapsulation is not merely a coating; it is a functional "firewall" that fundamentally alters the material's interaction with the environment.

5.1 Fluoropolymer Chemistry: FEP vs. PFA

The jacket material is the primary interface with the process fluid. M-Cor offers two distinct fluoropolymers, both of which are optically clear, complementing the translucent core.

FEP (Fluorinated Ethylene Propylene):

- **Structure:** A copolymer of hexafluoropropylene and tetrafluoroethylene.
- **Properties:** FEP is a melt-processable version of PTFE (Teflon). It shares PTFE's exceptional chemical inertness (resistant to 98% of industrial chemicals) and low coefficient of friction.
- **Thermal Limit:** It typically melts at ~260°C and is rated for continuous service up to 204°C.¹⁹
- **Mechanicals:** FEP is slightly stiffer and has lower flex-life than PFA. It is the "standard" choice for static O-rings.

PFA (Perfluoroalkoxy):

- **Structure:** A copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether. The addition of the alkoxy side chain interferes with crystallinity, allowing melt processing while maintaining the thermal robustness of the PTFE backbone.
- **Properties:** PFA is the "High Performance" option. It has a higher melting point (~305°C) and better retention of mechanical properties at elevated temperatures.²⁰
- **Purity:** PFA typically has lower extractables and metal ion content than FEP, making it the preferred choice for Semiconductor and Ultra-Pure Water (UPW) applications.

5.2 The "Firewall" Mechanism: Ingress and Outgassing

The user correctly identifies that the jacket "minimizes both ingress or outgassing." This bidirectional protection is critical for legitimizing peroxide silicone in high-purity use.

1. Blocking Ingress (Chemical Attack):

- Bare silicone swells rapidly in non-polar solvents (like hexane or toluene) and degrades in strong acids/bases.
- The FEP/PFA jacket acts as a permeation barrier. While not absolute (small molecules can permeate over time), the permeation rate is orders of magnitude slower than bare rubber. This allows the sensitive silicone core to provide sealing force in environments that would dissolve it within minutes.²¹

2. Blocking Outgassing (Contamination):

- **The Peroxide Liability:** As discussed, peroxide curing generates byproducts (e.g., benzoic acid). In a standard O-ring, these leach out.
- **The Encapsulation Solution:** The FEP/PFA jacket traps these volatiles inside the seal. Since fluoropolymers have extremely low surface energy and high density, large organic acid molecules cannot easily diffuse through the jacket wall into the process stream.
- **Strategic Outcome:** This "Firewall" effect effectively upgrades the purity classification of the peroxide core. It allows a "dirty" (by pharma standards) chemistry to function in a "clean" application, provided the jacket remains intact.¹

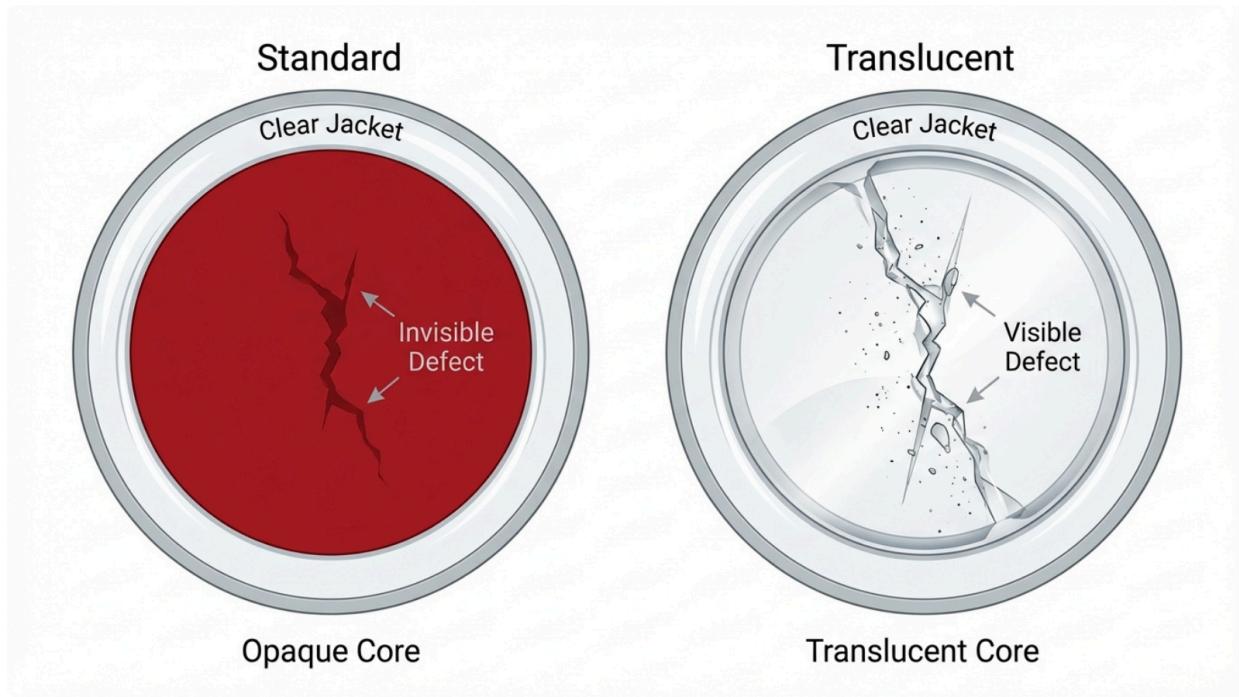
6. Failure Mode Analysis & The "Glass Cockpit"

Why is the "Translucent" feature of M-Cor's peroxide silicone so critical? It changes the paradigm of preventative maintenance from "Schedule-Based" to "Condition-Based."

6.1 The "Hidden" Failure Modes of Opaque Seals

In a standard red peroxide O-ring, the core is invisible.

- **Compression Set Fracture:** If an O-ring is over-compressed, the internal rubber structure can fracture. The O-ring loses its "spring back" force. Externally, the FEP jacket may look fine, but the seal is dead.
- **Chemical Permeation Swell:** If a solvent slowly permeates the FEP jacket, the silicone


core can swell. In an opaque seal, this swelling is often hidden until the pressure bursts the jacket seam.

6.2 The "Visual Inspection" Advantage

With M-Cor's Translucent Peroxide core, the entire assembly is transparent.

- **Refractive Index Mismatch:** A crack or fracture in the clear silicone core creates a new interface (rubber/air), which scatters light. This appears as a bright, silvery fissure inside the O-ring—easily visible to an operator during a shutdown inspection.
- **Colorimetric Indication:** If a colored process fluid permeates the jacket, the clear core will take on that color. This serves as an early warning system that the "Firewall" is breached, allowing for replacement *before* the fluid contaminates the batch or leaks externally.²
- **Extrusion Defects:** During manufacturing, air bubbles or voids in the core are instantly visible. M-Cor can reject these defective lengths *before* they are made into O-rings. In opaque red silicone, these voids would be hidden, leading to weak spots in the final seal.²²

The Glass Cockpit Effect: Visual Failure Detection

Comparative visibility of core defects. Left: Standard Iron-Oxide Peroxide Core (Red) obscures internal stress fractures and chemical ingress. Right: M-Cor Translucent Peroxide Core reveals internal voids, particulate contamination, and core degradation without disassembly.

7. Comparative Performance: Primary vs. Secondary Choice

The user frames the Translucent Peroxide O-ring as a "secondary choice." This implies a hierarchy of performance. How does it stack up against the "Primary" Platinum option?

7.1 Mechanical Properties: The Toughness Trade-off

Property	Translucent Peroxide (M-Cor)	Platinum Cured (Typical)	Analysis
Tensile Strength	$\geq 7 \text{ MPa (1015 psi)}$	Higher (~9-10 MPa typical)	Platinum generally creates a tighter, stronger network.

			However, in an encapsulated O-ring, the FEP jacket (tensile >25 MPa) bears the hoop stress, rendering the core's tensile strength less critical.
Compression Set	≤ 35% (22h @ 175°C)	Typically 20-30%	Critical Insight: While modern platinum is excellent, traditional Peroxide HCR is legendary for its resistance to taking a "set." M-Cor's 35% is a conservative rating for the <i>assembly</i> (jacket stiffness affects the test). The peroxide core itself likely has excellent rebound memory, crucial for long-term sealing.
Elongation	≥ 200%	Higher (300-500%)	Platinum is "stretchier." Peroxide is "tougher." In an encapsulated ring, stretch is limited by the non-elastic FEP jacket anyway, so the high elongation of platinum is largely wasted

			capability.
--	--	--	-------------

7.2 The Economic & Strategic Case

- **Cost:** Platinum catalysts are noble metals; their price fluctuates with the commodities market. Peroxide initiators are inexpensive organic chemicals. The Translucent Peroxide O-ring generally commands a lower price point, making it the ideal "volume" seal for non-critical (but still high-purity) locations.
- **Supply Chain Resilience:** As noted in the manufacturing section, the stability of the peroxide supply chain (no "Part A/B" shelf life issues) makes this material a more reliable option for large-scale, continuous procurement.

Material Selection Matrix: Balancing Cost, Clarity, and Performance

Performance Comparison

Metric	Standard Peroxide	Translucent Peroxide	Platinum Silicone
Visual Inspection Clarity	✗ Opaque / Rust Red	✓ Translucent	✓ Clear / Translucent
Cost Production	✓ Low	✓ Low	✗ High
Processability Pot Life	✓ High Stability	✓ High Stability	✗ Low Stability
Purity Contamination	✗ Low	✓ High	✓ High
Compression Set Resilience	✓ Excellent	✓ Excellent	! Good

Comparative analysis of silicone core options. M-Cor's Translucent Peroxide (center) offers a strategic balance, matching Platinum's inspectability while maintaining Peroxide's processing stability and cost profile.

Data sources: [M-Cor Inc.](#), [TBL Plastics](#), [Viking Extrusions](#), [Marco Rubber](#)

8. Conclusion: The Validated Alternative

The deep research confirms that M-Cor's **Translucent Peroxide-Cured Encapsulated O-Ring** is not merely a "secondary choice" in the sense of being inferior; it is a **strategic alternative** that solves specific operational liabilities inherent in platinum systems.

The user's core reasoning regarding the difficulties of "mixing on site" and "short pot life" in long-run extrusions is technically validated. By leveraging the inherent shelf-stability and thermal latency of peroxide chemistry, M-Cor provides a material that is dimensionally

consistent and manufacturing-friendly.

Crucially, by formulating this peroxide core to be **translucent** (eliminating the iron oxide "black box") and protecting it with a fluoropolymer **encapsulation**, M-Cor successfully bridges the gap. The product delivers the robustness of peroxide with the inspectability and surface purity of platinum. For the discerning engineer, this represents a high-value opportunity to optimize seal selection: reducing costs and manufacturing risks without compromising the ability to visually verify the integrity of the process line. It is a triumph of applied polymer science, effectively turning a "secondary" option into a primary solution for operational reliability.

Works cited

1. Encapsulated Platinum Cured Silicone : Next level innovation - M-Cor, accessed December 31, 2025, <https://www.m-cor.com/encapsulated-platinum-cured-silicone/>
2. Press Release Translucent Silicone - M-Cor Inc., accessed December 31, 2025, <https://www.m-cor.com/press-release-translucent-silicone/>
3. So, Which is Better, Platinum or Peroxide Silicone? - TBL Plastics, accessed December 31, 2025, <https://tblplastics.com/platinum-vs-peroxide-silicone-tubing/>
4. Peroxide & Platinum Cured Silicone: What are the differences - Viking Extrusions, accessed December 31, 2025, <https://www.vikingextrusions.co.uk/blog/what-are-the-differences-between-platinum-and-peroxide-cured-silicone/>
5. Platinum vs Peroxide cured Silicones, accessed December 31, 2025, <https://www.silex.co.uk/wp-content/uploads/2024/05/Platinum-vs-Peroxide-Silex-2024.pdf>
6. Translucent Silicone Rubber (VMQ) - Peroxide-Cured, 70 Shore A - M-Cor, accessed December 31, 2025, https://www.m-cor.com/wp-content/uploads/2025/09/M-Cor_Translucent_Silicone_70A_Peroxide_Datasheet_v2.pdf
7. Peroxide Curing in Silicone Manufacturing | Articles, accessed December 31, 2025, <https://jehbco.com.au/peroxide-curing-silicone-manufacturing/>
8. Platinum Cure Silicone versus Peroxide Cure Silicone - Stockwell Elastomerics, accessed December 31, 2025, <https://www.stockwell.com/blog/platinum-cure-silicone-versus-peroxide-cure-silicone/>
9. Peroxide Cured vs Platinum Cured Silicone Tubing - NewAge Industries, accessed December 31, 2025, <https://newageindustries.com/wp-content/uploads/2024/07/GlobalSpec-WhitePaper-04.01.24.pdf>
10. Platinum Cured Silicone or Peroxide Cured Silicone Comparison & Selection Guide - Accurate Rubber Corporation, accessed December 31, 2025, <https://www.accuraterubber.com/platinum-cured-silicone-or-peroxide-cured-silicone-comparison-selection-guide/>

11. Why your silicone is not curing: Inhibition and poisoning of silicones - GA Lindberg, accessed December 31, 2025,
<https://www.galindberg.se/en/knowledge-hub/why-your-silicone-is-not-curing-inhibition-and-poisoning-of-silicones>
12. Silicone Rubber, accessed December 31, 2025,
https://www.shinetsusilicone-global.com/catalog/pdf/rubber_et.pdf
13. Examining the Benefits of Silicone Rubber | Marco Rubber and Plastics, accessed December 31, 2025,
<https://www.marcorubber.com/blog/examining-the-benefits-of-silicone-rubber/>
14. A Complete Guide to Heat Stabilised Silicone Rubber - Seals Direct, accessed December 31, 2025, <https://www.sealsdirect.co.uk/heat-stabilised-silicone-rubber>
15. Mechanical Properties Data Sheet - M-Cor Inc., accessed December 31, 2025,
https://www.m-cor.com/wp-content/uploads/2025/05/M-Cor_Teflon_Encapsulated_Silicone_O-Ring_Mechanical_Properties.pdf
16. A Guide to Silicone Dispersions, accessed December 31, 2025,
<https://www.silicone-polymers.co.uk/pdfMaster/A%20guide%20to%20silicone%20dispersions.pdf>
17. Advanced Masking: Platinum Cured vs. Peroxide Cured Silicone - Echo Engineering, accessed December 31, 2025,
<https://www.echosupply.com/blog/advanced-masking-understanding-platinum-cured-vs-peroxide-cured-silicone/>
18. Mixing Silicone Rubber: Best Techniques - Sil-Craft Elastomers, accessed December 31, 2025,
<https://sil-craft.com/blogs/learning/mixing-platinum-silicone-rubber>
19. Encapsulated O-Rings for Reliable Sealing Solutions - M-Cor Inc., accessed December 31, 2025,
<https://www.m-cor.com/encapsulated-o-rings-for-reliable-sealing-solutions/>
20. Mechanical Properties Data Sheet - M-Cor Inc., accessed December 31, 2025,
https://www.m-cor.com/wp-content/uploads/2025/05/M-Cor_Teflon_PFA_Encapsulated_Silicone_O-Ring_Mechanical_Properties.pdf
21. Encapsulated Platinum O-Rings: Purity for critical industries - M-Cor Inc., accessed December 31, 2025,
<https://www.m-cor.com/encapsulated-platinum-o-rings/>
22. Vision-Based System for Black Rubber Roller Surface Inspection - MDPI, accessed December 31, 2025, <https://www.mdpi.com/2076-3417/13/15/8999>